Publications

2020

Silver, A. M., Stahl, A. E., Loiotile, R., Smith-Flores, A. S., & Feigenson, L. (2020). When Not Choosing Leads
        to Not Liking: Choice-Induced Preference in Infancy. Psychological Science, 0956797620954491.
Gouet, C., Carvajal, S., Halberda, J., & Peña, M. (2020). Training nonsymbolic proportional reasoning in
         children and its effects on their symbolic math abilities. Cognition, 197, 104154.
Wang, J. & Feigenson, L. (2020). Dynamic changes in numerical acuity in 4-month-old infants.
        Infancy, 00, 1-16.
Gouet, C., Carvajal, S., Halberda, J., & Peña, M. (2020). Training nonsymbolic proportional reasoning
         in children and its effects on their symbolic math abilities. Cognition, 197, 104154.
Wang, J., Halberda, J., & Feigenson, L. (2020). Emergence of the Link Between the Approximate
         Number System and Symbolic Math Ability. Child Development.
Libertus, M. E., Odic, D., Feigenson, L., & Halberda, J. (2020). Effects of Visual Training of
Approximate Number Sense on Auditory Number Sense and School Math Ability.
Frontiers in Psychology, 11, 2085.

2019

Halberda, J. (2019). Perceptual input is not conceptual content. Trends in Cognitive Sciences, 23(8), 636-638.
Langfus, J., Maiche, A., De León, D., Fitipalde, D., Mailhos, Á., & Halberda, J. (2019). The Effects of SES,
        Grade-Repeating, and IQ in a Game-Based Approximate Math Intervention. In Cognitive
        Foundations for Improving Mathematical Learning (pp. 37-67). Academic Press.
Pailian, H., Simons, D. J., Wetherhold, J., & Halberda, J. (2019). Using the flicker task to estimate
        visual working memory storage capacity. Attention, Perception, & Psychophysics, 82, 1271–1289.
Elliott, L., Feigenson, L., Halberda,J., & Libertus, M. (2019). Bidirectional, longitudinal associations
between math ability and approximate number system precision in childhood. Journal of
Cognition and Development, (20)1, 56-74. 
Wang, J.J. & Feigenson, L. (2019) Infants recognize counting as numerically relevant. Developmental
Science. 
Wang, J.J. & Feigenson, L. (2019). Is empiricism innate? Preference for nurture over nature in
people’s beliefs about the origins of human knowledge. Open Mind, (3), 89-100.

2018

Kanjlia, S., Feigenson, L., & Bedny, M. (2018). Numerical cognition is resilient to dramatic
        changes in early sensory experience. Cognition, 179, 111-120.
Stahl, A. E., & Feigenson, L. (2018). Violations of Core Knowledge Shape Early Learning. Topics in
Cognitive Science.
Halberda, J. (2018). Logic in babies. Science, 359(6381), 1214-1215.
Libertus, M. E., Feigenson, L., & Halberda, J. (2018). Infants Extract Frequency Distributions from
Variable Approximate Numerical Information. Infancy, 23(1), 29-44.
Odic, D., Pietroski, P., Hunter, T., Halberda, J., & Lidz, J. (2018). Individuals and non-individuals in
cognition and semantics: The mass/count distinction and quantity representation. Glossa: a
journal of general linguistics, 3(1).
Stahl, A. E., & Feigenson, L. (2018). Infants use linguistic group distinctions to chunk items in
memory. Journal of experimental child psychology, 172, 149-167.
Wang, J. J., Libertus, M. E., & Feigenson, L. (2018). Hysteresis-induced changes in preverbal
        infants’ approximate number precision. Cognitive Development, 47, 107-116.

2017

Kibbe, M.M. & Feigenson, L. (2017). A dissociation between small and large numbers in young
children_s ability to “solve for x” in non-symbolic math problems. Cognition 60, 82-90
Libertus, M. E., Liu, A., Pikul, O., Jacques, T., Cardoso-Leite, P., Halberda, J., & Bavelier, D. (2017). The
impact of action video game training on mathematical abilities in adults. AERA Open,
3(4), 2332858417740857.
Stahl, A. E., & Feigenson, L. (2017). Expectancy violations promote learning in young children.
Cognition, 163, 1-14
Wang, J. J., Halberda, J., & Feigenson, L. (2017). Approximate number sense correlates with math
performance in gifted adolescents. Acta psychologica, 176, 78-84
Wang, J. J., Odic, D., Halberda, J., & Feigenson, L. (2017). Better together: Multiple lines of evidence for a
link between approximate and exact number representations: A reply to Merkley, Matejko,
and Ansari. Journal of Experimental Child Psychology, 153, 168-172.

2016

Odic, D., Lisboa, J. V., Eisinger, R., Olivera, M. G., Maiche, A., & Halberda, J. (2016). Approximate number and
         approximate time discrimination each correlate with school math abilities in young children. Acta
        Psychologica, 163, 17-26.
Shusterman, A., Slusser, E., Halberda, J., & Odic, D. (2016). Acquisition of the cardinal principle coincides with
        improvement in approximate number system acuity in preschoolers. PloS one, 11(4), e0153072.
Kanjlia, S., Lane, C., Feigenson, L., & Bedny, M. (2016). Absence of visual experience modifies the neural
basis of numerical thinking. Proceedings of the National Academy of Sciences, 113(40), 11172-11177.
Kibbe, M.M., & Feigenson, L. (2016). Infants use temporal regularities to chunk objects in memory.
Cognition, 146, 251-263.
Libertus, M. E., Odic, D., Feigenson, L., & Halberda, J. (2016). The precision of mapping between number
words and the approximate number system predicts children’s formal math abilities. Journal of
experimental child psychology, 150, 207-226.
Pailian, H., Libertus, M. E., Feigenson, L., & Halberda, J. (2016). Visual working memory capacity
increases between ages 3 and 8 years, controlling for gains in attention, perception, and executive control.
Attention, Perception, & Psychophysics, 78(6), 1556-1573.
Wang, J. J., Odic, D., Halberda, J., & Feigenson, L. (2016). Changing the precision of preschoolers’
approximate number system representations changes their symbolic math performance. Journal of
Experimental Child Psychology, 147, 82-99.

2015

Odic, D., & Halberda, J. (2015). Eye movements reveal distinct encoding patterns for number and cumulative
        surface area in random dot arrays. Journal of vision, 15(15), 1-15.
Odic, D., Le Corre, M., & Halberda, J. (2015). Children’s mappings between number words and the approximate
        number system. Cognition, 138, 102-121.
Kibbe, M.M. & Feigenson, L. (2015). Young children “solve for x” using the approximate number system.
Developmental Science, 18(1), 38-49.
Libertus, M. E., Odic, D., Feigenson, L., & Halberda, J. (2015). A Developmental Vocabulary Assessment
for Parents (DVAP): Validating parental report of vocabulary size in 2-to 7-year-old children. Journal
of Cognition and Development, 16(3), 442-454.
Stahl, A. E., & Feigenson, L. (2015). Observing the unexpected enhances infants_ learning and
exploration. Science, 348(6230), 91-94
Zosh, J. M., & Feigenson, L. (2015). Array heterogeneity prevents catastrophic forgetting in infants.
Cognition, 136, 365-380.

2014

Tosto, M. G., Petrill, S. A., Halberda, J., Trzaskowski, M., Tikhomirova, T. N., Bogdanova, O. Y., … & Plomin, R.
        (2014). Why do we differ in number sense? Evidence from a genetically sensitive investigation.
        Intelligence, 43, 35-46.4
Kibbe, M.M. & Feigenson, L. (2014) Developmental origins of recoding and decoding in memory.
Cognitive Psychology 75, 55-79.
Libertus, M. E., Feigenson, L., Halberda, J., & Landau, B. (2014). Understanding the mapping between
numerical approximation and number words: Evidence from Williams syndrome and typical
development. Developmental science, 17(6), 905-919.
Stahl, A. E., & Feigenson, L. (2014). Social knowledge facilitates chunking in infancy. Child
development, 85(4), 1477-1490.

2013

Hellgren, K., Halberda, J., Forsman, L., Ådén, U., & Libertus, M. (2013). Compromised approximate number
        system acuity in extremely preterm school‐aged children. Developmental Medicine & Child
        Neurology, 55(12), 1109-1114.
Feigenson, L., Libertus, M. E., & Halberda, J. (2013). Links between the intuitive sense of number and
formal mathematics ability. Child development perspectives, 7(2), 74-79.
Libertus, M. E., Feigenson, L., & Halberda, J. (2013). Is approximate number precision a stable
predictor of math ability?. Learning and individual differences, 25, 126-133.
Libertus, M. E., Feigenson, L., & Halberda, J. (2013). Numerical approximation abilities correlate with
and predict informal but not formal mathematics abilities. Journal of Experimental Child
Psychology, 116(4), 829-838.
Moher, M., & Feigenson, L. (2013). Factors influencing infants’ ability to update object
representations in memory. Cognitive development, 28(3), 272-289.
Odic, D., Libertus, M. E., Feigenson, L., & Halberda, J. (2013). Developmental change in the acuity of
approximate number and area representations. Developmental psychology, 49(6), 1103.
Odic, D., Pietroski, P., Hunter, T., Lidz, J., & Halberda, J. (2013). Young children’s understanding of
“more” and discrimination of number and surface area. Journal of Experimental Psychology:
Learning, Memory, and Cognition, 39(2), 451.
Rosenberg, R. D., & Feigenson, L. (2013). Infants hierarchically organize memory representations.
Developmental science, 16(4), 610-621.

2012

Halberda, J., Ly, R., Wilmer, J. B., Naiman, D. Q., & Germine, L. (2012). Number sense across the
lifespan as revealed by a massive Internet-based sample. Proceedings of the National Academy
of Sciences, 109(28), 11116-11120.
Libertus, M. E., Odic, D., & Halberda, J. (2012). Intuitive sense of number correlates with math scores
on college-entrance examination. Acta psychologica, 141(3), 373-379.
Moher, M., Tuerk, A. S., & Feigenson, L. (2012). Seven-month-old infants chunk items in memory.
Journal of experimental child psychology, 112(4), 361-377.
Zosh, J. M., & Feigenson, L. (2012). Memory load affects object individuation in 18-month-old infants.
Journal of Experimental Child Psychology, 113(3), 322-336.

2011

Feigenson, L. (2011). Predicting sights from sounds- 6-month-olds_ intermodal numerical abilities.
Journal of experimental child psychology, 110(3), 347-361.
Libertus, M., Feigenson, L., Halberda, J. (2011). Preschool acuity of the approximate number system
correlates with school math ability. Developmental Science, 14(6), 1292-1300.
Lidz, J., Halberda, J., Pietroski, P., & Hunter, T. (2011). Interface transparency thesis and the
psychosemantics of most. Natural Language Semantics, 19(3), 227-256.
Mazzocco, M. M., Feigenson, L., & Halberda, J. (2011). Impaired acuity of the approximate number
system underlies mathematical learning disability (dyscalculia). Child development, 82(4), 1224-
1237.
Spiegel, C., & Halberda, J. (2011). Rapid fast-mapping abilities in 2-year-olds. Journal of experimental
child psychology, 109(1), 132-140.
Zosh, J.M., Feigenson, L., & Halberda, J.P. (2011). Memory for multiple visual ensembles in infancy.
Journal of Experimental Psychology- General, 140(2), 141-158.

2010

Moher, M., Feigenson, L., & Halberda, J. (2010). A one-to-one bias and fast-mapping support
preschoolers_ learning about faces and voices. Cognitive Science, 34, 719-751.

2009

Pietroski, P., Lidz, J., Hunter, T., & Halberda, J. (2009). The meaning of ‘most’: Semantics, numerosity and
        psychology. Mind & Language, 24(5), 554-585.
Feigenson, L. & Yamaguchi, M. (2009). Limits on infants’ ability to dynamically update object
representations. Infancy, 14(2), 244-262.

2008

Feigenson, L. (2008). Parallel Enumeration is constrained by a set-based limit. Cognition, 107, 1-18.
Feigenson, L. & Halberda, J. (2008). Conceptual knowledge increases infants’ memory. Proceedings of
the National Academy of Sciences, 105(29), 9926-9930.
Halberda, J., & Feigenson, L. (2008). Developmental change in the acuity of the” Number Sense”: The
Approximate Number System in 3-, 4-, 5-, and 6-year-olds and adults. Developmental psychology, 44(5), 1457.
Halberda, J. & Feigenson, L. (2008). Set representations required. [Commentary] Behavioral and Brain
Sciences, 31, 655-656.

2007

Feigenson, L (2007). Continuity of format and representation in short term memory development.
Chapter to appear in Short- and Long-term Memory in Early Childhood- Taking the First Steps.
Feigenson, L. (2007). The equality of quantity. Trends in Cognitive Sciences, 11(5), 185-187.
Halberda, J., & Goldman, J. (2007). One-trial Learning in 2-year-olds: Children Learn New Nouns in 3
Seconds Flat.

2006

Halberda, J. (2006). Is this a dax which I see before me? Use of the logical argument disjunctive
syllogism supports word-learning in children and adults. Cognitive psychology, 53(4), 310-344.
Halberda, J., Sires, S.F., & Feigenson, L. (2006). Multiple spatially overlapped sets can be enumerated
in parallel. Psychological Science, 17 (7), 572-576.
Kouider, S., Halberda, J., Wood, J., & Carey, S. (2006). Acquisition of English number marking: The
singular-plural distinction. Language Learning and development, 2(1), 1-25.

2005

Feigenson, L. (2005). A double dissociation in infants’ representation of object arrays. Cognition, 95,
B37-B48.
Feigenson, L. & Carey, S. (2005). On the limits of infants’ quantification of small object arrays.
Cognition, 97, 295-313.

2004

Feigenson, L. & Halberda, J. (2004). Infants chunk object arrays into sets of individuals. Cognition.
Feigenson, L., Dehaene, S., & Spelke, E.S. (2004). Core systems of number.Trends in Cognitive Sciences
(8), 7, 307-314.

2003

Feigenson, L. & Carey, S. (2003). Tracking individuals via object-files- Evidence from infants’ manual
search. Developmental Science, 6, 568-584.
Halberda, J. (2003). The development of a word-learning strategy. Cognition, 87, B23- B34.

2002

Feigenson, L., Carey, S., Spelke, E.S. (2002). Infants’ discrimination of number vs. continuous extent.
Cognitive Psychology, 44, 33-66.
Feigenson, L., Carey, S., & Hauser, M. (2002). The representations underlying infants’ choice of more-
Object-files versus analog magnitudes. Psychological Science, 13, 150-156.