Math and Early Numerical Abilities 2020 Wang, J., Halberda, J., & Feigenson, L. Emergence of the Link Between the Approximate Number System and Symbolic Math Ability. Child Development. Libertus, M. E., Odic, D., Feigenson, L., & Halberda, J. (2020). Effects of Visual Training of Approximate Number Sense on Auditory Number Sense and School Math Ability. Frontiers in Psychology, 11, 2085. 2019 Wang, J.J. & Feigenson, L. (2019) Infants recognize counting as numerically relevant. Developmental Science, 22(6), e12805. Elliott, L., Feigenson, L., Halberda,J., & Libertus, M. (2019). Bidirectional, longitudinal associations between math ability and approximate number system precision in childhood. Journal of Cognition and Development, (20)1, 56-74. 2018 Kanjlia, S., Feigenson, L., & Bedny, M. (2018). Numerical cognition is resilient to dramatic changes in early sensory experience. Cognition, 179, 111-120. Libertus, M. E., Feigenson, L., & Halberda, J. (2018). Infants Extract Frequency Distributions from Variable Approximate Numerical Information. Infancy, 23(1), 29-44. Odic, D., Pietroski, P., Hunter, T., Halberda, J., & Lidz, J. (2018). Individuals and non-individuals in cognition and semantics: The mass/count distinction and quantity representation. Glossa: a journal of general linguistics, 3(1). 2017 Kibbe, M.M. & Feigenson, L. (2017). A dissociation between small and large numbers in young children_s ability to “solve for x” in non-symbolic math problems. Cognition 60, 82-90 Libertus, M. E., Liu, A., Pikul, O., Jacques, T., Cardoso-Leite, P., Halberda, J., & Bavelier, D. (2017). The impact of action video game training on mathematical abilities in adults. AERA Open, 3(4), 2332858417740857. Wang, J. J., Halberda, J., & Feigenson, L. (2017). Approximate number sense correlates with math performance in gifted adolescents. Acta psychologica, 176, 78-84 Wang, J. J., Odic, D., Halberda, J., & Feigenson, L. (2017). Better together: Multiple lines of evidence for a link between approximate and exact number representations: A reply to Merkley, Matejko, and Ansari. Journal of Experimental Child Psychology, 153, 168-172. 2016 Kanjlia, S., Lane, C., Feigenson, L., & Bedny, M. (2016). Absence of visual experience modifies the neural basis of numerical thinking. Proceedings of the National Academy of Sciences, 113(40), 11172-11177. Libertus, M. E., Odic, D., Feigenson, L., & Halberda, J. (2016). The precision of mapping between number words and the approximate number system predicts children’s formal math abilities. Journal of experimental child psychology, 150, 207-226. Wang, J. J., Odic, D., Halberda, J., & Feigenson, L. (2016). Changing the precision of preschoolers’ approximate number system representations changes their symbolic math performance. Journal of Experimental Child Psychology, 147, 82-99. 2015 Kibbe, M.M. & Feigenson, L. (2015). Young children “solve for x” using the approximate number system. Developmental Science, 18(1), 38-49. Zosh, J. M., & Feigenson, L. (2015). Array heterogeneity prevents catastrophic forgetting in infants. Cognition, 136, 365-380. 2014 Libertus, M. E., Feigenson, L., Halberda, J., & Landau, B. (2014). Understanding the mapping between numerical approximation and number words: Evidence from Williams syndrome and typical development. Developmental science, 17(6), 905-919. 2013 Feigenson, L., Libertus, M. E., & Halberda, J. (2013). Links between the intuitive sense of number and formal mathematics ability. Child development perspectives, 7(2), 74-79. Libertus, M. E., Feigenson, L., & Halberda, J. (2013). Is approximate number precision a stable predictor of math ability?. Learning and individual differences, 25, 126-133. Libertus, M. E., Feigenson, L., & Halberda, J. (2013). Numerical approximation abilities correlate with and predict informal but not formal mathematics abilities. Journal of Experimental Child Psychology, 116(4), 829-838. Odic, D., Pietroski, P., Hunter, T., Lidz, J., & Halberda, J. (2013). Young children’s understanding of “more” and discrimination of number and surface area. Journal of Experimental Psychology: Learning, Memory, and Cognition, 39(2), 451. 2012 Halberda, J., Ly, R., Wilmer, J. B., Naiman, D. Q., & Germine, L. (2012). Number sense across the lifespan as revealed by a massive Internet-based sample. Proceedings of the National Academy of Sciences, 109(28), 11116-11120. Libertus, M. E., Odic, D., & Halberda, J. (2012). Intuitive sense of number correlates with math scores on college-entrance examination. Acta psychologica, 141(3), 373-379. 2011 Feigenson, L. (2011). Predicting sights from sounds- 6-month-olds_ intermodal numerical abilities. Journal of experimental child psychology, 110(3), 347-361. Libertus, M., Feigenson, L., Halberda, J. (2011). Preschool acuity of the approximate number system correlates with school math ability. Developmental Science, 14(6), 1292-1300 Mazzocco, M. M., Feigenson, L., & Halberda, J. (2011). Impaired acuity of the approximate number system underlies mathematical learning disability (dyscalculia). Child development, 82(4), 1224-1237. 2008 Feigenson, L. (2008). Parallel Enumeration is constrained by a set-based limit. Cognition, 107, 1-18. Halberda, J., & Feigenson, L. (2008). Developmental change in the acuity of the” Number Sense”: The Approximate Number System in 3-, 4-, 5-, and 6-year-olds and adults. Developmental psychology, 44(5), 1457. Halberda, J. & Feigenson, L. (2008). Set representations required. [Commentary] Behavioral and Brain Sciences, 31, 655-656. Halberda, J., Mazzocco, M. M., Feigenson, L. (2008). Individual differences in non-verbal number acuity correlate with maths achievement. Nature, 455(2), 665-669. 2007 Feigenson, L. (2007). The equality of quantity. Trends in Cognitive Sciences, 11(5), 185-187. 2006 Halberda, J., Sires, S.F., & Feigenson, L. (2006). Multiple spatially overlapped sets can be enumerated in parallel. Psychological Science, 17 (7), 572-576. 2004 Feigenson, L., Dehaene, S., & Spelke, E.S. (2004). Core systems of number.Trends in Cognitive Sciences (8), 7, 307-314. 2002 Feigenson, L., Carey, S., Spelke, E.S. (2002). Infants’ discrimination of number vs. continuous extent. Cognitive Psychology, 44, 33-66. Share this:TwitterFacebookLike this:Like Loading...